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On the pressure dependence of the
thermodynamical scaling exponent c

R. Casalini *a and T. C. Ransom †ab

Since its initial discovery more than fifteen years ago, the thermodynamical scaling of the dynamics of

supercooled liquids has been used to provide many new important insights in the physics of liquids,

particularly on the link between dynamics and intermolecular potential. A question that has long been

discussed is whether the scaling exponent gS is a constant or does it depends on pressure. An alternative

definition of the scaling parameter, gI = q ln T/q ln r|X has been presented in the literature, and has been

erroneously considered equivalent to gS. Here we offer a simple method to determine the pressure

dependence of gI using only the pressure dependence of the glass transition and the equation of state.

Using this new method we find that for the six nonassociated liquids investigated, gI always decreases

with increasing pressure. Importantly in all cases the value of gI remains always larger than 4. Liquids

having gI closer to 4 at low pressure show a smaller change in gI with pressure. We argue that this result

has very important consequences for the experimental determination of the functional form of the

repulsive part of the potential in liquids. Comparing the pressure and temperature dependence of gS and

gI we find, contrary to what has been assumed in the literature to date, that these two parameters are

not equivalent and have very different pressure and temperature dependences.

Introduction

The density and temperature dependence of dynamic properties of
liquids and polymers (i.e. viscosity, relaxation and diffusion time)
has been found to be well described by the thermodynamical
scaling (TDS) behavior1–5

log(X) = I(Tr�gS), (1)

where X is a dynamic property (relaxation time, viscosity, etc.),
I is an unknown function, T the temperature, r the density, and

gS the thermodynamical scaling exponent. This scaling behavior is

sometimes referred in other publications also as ‘‘density scaling’’.

The scaling condition can also be rewritten as

TXrX
�gS = const or ln(TX) � gS ln(rX) = const, (2)

where TX and rX are the temperature and density at X = const.
An alternative definition of the scaling exponent has been

derived from the Isomorph theory6,7

gI ¼
@ lnT

@ ln r

� �
Sexc

; (3)

where Sexc is the excess entropy. Constant excess entropy
correspond to an isomorph, this corresponds to the condition
for the dynamic properties X = const. The two definitions of g
have been used in the literature as equivalent, however if we
differentiate eqn (2) we find

gS ¼ gI �
@gS
@ lnr

lnr: (4)

Thus, the two definition of g are equivalent only in the case in
which gS is a constant, and the determination of gS from gI is
clearly not straightforward. Consequently the pressure depen-
dence of gI cannot substituted in eqn (1) to find a new scaling
function as

log(X) a I(Tr�gI(T,r)). (5)

Indeed, as we show in this paper referring to gI as a ‘‘scaling’’
exponent it is not correct, since in general a master curve
cannot be obtained using this parameter apart for special cases.

In the literature it has been debated at length whether the
exponent of the thermodynamical scaling, gS, for nonassociated
liquids is constant or state-point dependent.8–15 It has been
shown for many materials that a constant gS gives a very good
superposition of various dynamic properties over a broad range
of density and temperature. However, in a recent investigation
we have found unequivocal evidence that dielectric relaxation
data for a nonassociated liquid (DC704) cannot be scaled
according to eqn (1) with gS = const and found that the exponent
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gI is state-point dependent, decreasing with increasing pressure.14

The state-point dependence of gI is in agreement with the predic-
tions of the isomorph theory.16,17 Thus, it is of interest to re-
analyze past results on other nonassociated liquids to investigate if
a similar dependence can be found. It is worth mentioning that for
nonassociated liquids we include liquids without strong direc-
tional bonds (i.e. covalent or hydrogen bonds), thus we are
excluding systems such as polymers and liquids forming hydrogen
bond networks. It is important to notice that in our previous
analysis of the high pressure dielectric relaxation data of DC704,
we have actually not determined the pressure dependence of gS,
but only assumed that it was equivalent to that of gI. Here we
consider that, according to eqn (4), the two parameters are not the
same, and we want to determine how different are the two
behaviors of gS(P) and gI(P).

A standard way to determine if the parameter gS is constant
is to plot ln(T) versus ln(r) at constant X. It is generally found
that gS determined from the average slope from a linear best fit
to the data gives a good scaling of ln(X(T,r)) (eqn (1)). When
determining the state-point dependence of gI, it is necessary to
find the local slope of ln(T) versus ln(r) at constant X. Thus, gS is
generally close to an average of gI. The problem of determining
the state-point dependence of gI is reduced to the calculation of
the local slope of the ln(TX) versus ln(rX) behavior from a
limited number of points (typically 4). This is not trivial since
the range of T and r are limited. An additional problem of
using this method is that it is not clear what should be the
function describing the state-point dependence of gI.

To overcome this problem in here, we re-analyze existent
data using a different approach. Recently it was proposed
to determine the state-point dependence of gI using the
equation11,14,18

gI ¼
DV

kTEP � TDVaP
; (6)

where DV (= RT(q ln (X)/qP)T) is the activation volume, kT the
isothermal compressibility, EP the isobaric activation energy
and aP is the isobaric expansion coefficient. It is worth
mentioning that the parameters kT and aP are not constants
but are functions calculated from the EOS at varying thermo-
dynamic conditions in all equations herein. Using this method,
we determined the variation of gI with pressure for the liquid
DC704, decreasing from gI E 7 at atmospheric pressure to
gI E 4 at P = 0.9 GPa.14

Recently,21 we have also shown that, taking into considera-
tion the available data for nonassociated liquids, out of fifty
liquids only for two reported values of gS are smaller than 4, and
both liquids are extremely polar, propylene carbonate (gS = 3.7,
dipole moment mD 3.9 D) and acetonitrile (gS = 3.5, mD 4.9 D).
A large value of gS (= 7.6) has been reported for the very polar
(m D 2.33 D) molecular crystal pentachloronitrobenzene
(PCNB).19 However, PCNB is not an isotropic liquid and thus
not included. Theoretically, the reduced dimensionality could
be used to justify the large value of gS found for PCNB, but this
is beyond the scope of this paper. Since molecular dynamic
simulations have shown that a large dipole moment is expected

to cause a decrease of gS, the polarity of propylene carbonate
and acetonitrile may explain their lower value of gS.20 Thus, the
value gS E 4 appears to be a limit behavior for nonassociated
liquids.

Recently, we also showed21 that eqn (6) can be further
simplified to

gI ¼
1

T kT
@P

@T

����
X

�aP
� �: (7)

Using this equation, the state-point dependence of gI can be
determined using just three quantities. With eqn (3) we also
investigated three associated liquids: glycerol, dibutyl phthalate,
and dipropylene glycol, and found that the exponent gI increases
(from gI o 4) towards gI E 4 at high pressure.21

Here we present a simple derivation obtaining an analytical
function for the state dependence of gI instead of determining
gI at discrete experimental points using eqn (7) or by deter-
mining the local slope of ln(TX) versus ln(rX) from few experi-
mental points. We show how the pressure behavior of gI can be
deduced from the pressure behavior of the temperature at
constant X, TX(P).

Using this new method we present new data on the pressure
behavior of the thermodynamical scaling exponent gI and we
compare the difference in the behavior of gS expected from
eqn (4).

Methods
Derivation of cI(P) equation

The pressure dependence of the temperature at a fixed value of
X, TX(P), has been found for several systems to be non-linear,
and its behavior can be described by the empirical equation of
Andersson and Andersson (AA)22

TX Pð Þ ¼ T0 1þ P

P0

� �1
a
; (8)

where T0, a and P0 are constants. The derivative of the AA

equation is @TX=@P ¼ T0=aP0 P=P0 þ 1ð Þ
1
a
�1. This equation has

been verified for a large number of materials by many different
experimental groups.23–29 Although the AA equation was ori-
ginally introduced empirically, it has been also derived from
theoretical models.30,31

The dependence of the density from pressure and tempera-
ture is well described by the Tait equation of state (EoS).32

r T ;Pð Þ ¼ r0 Tð Þ 1� C ln 1þ P

b0 exp �b1Tð Þ

� �� �
; (9)

where r0(T) is the temperature dependent density at zero
pressure (described either as a polynomial or exponential)
and C, b0 and b1 are constants.
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By combining eqn (8) and (9) we can describe the pressure
dependence of the density at constant X, rX(P) as

rX Pð Þ ¼ r0 TX Pð Þð Þ 1� C ln 1þ
P0

TX Pð Þ
T0

� 1

� �a� �

b0 exp �b1TX Pð Þð Þ

2
664

3
775

8>><
>>:

9>>=
>>;
:

(10)

Rewriting the isomorph condition as

gI Pð Þ ¼
@ ln TXð Þ
@ ln rXð Þ; (11)

we can determine the pressure dependence of the exponent
gI as

gI Pð Þ ¼
rX
TX

@TX

@rX
: (12)

Therefore, from the behavior of the pressure dependence of TX

(eqn (8)) together with an EoS, it is possible to determine the
pressure dependence of the exponent gI without the need to
directly analyze the deviation from the linear behavior of ln(rX)
versus ln(TX).

Substituting eqn (10) into eqn (12), it is possible to deter-
mine the analytical function of gI(P),

gI Pð Þ¼ TX Pð Þ �aPþ
C

1þln 1þ P

B Pð Þ

� �
aðPþP0Þ
TX Pð Þ þb1P

� �

PþBðPÞ

2
664

3
775

8>><
>>:

9>>=
>>;

�1

;

(13)

where

B(P) = b0 exp[�b1TX(P)]. (14)

It is interesting to note that considering the typical values of
the parameters for nonassociated liquids in eqn (13), the term
due to aP in eqn (13) (and eqn (7)) varies much less than the
second term related to the compressibility; the latter increases
with pressure, causing the decrease of gI. It is important to
notice that an extrapolation to much higher pressure than the
EoS data or the TX(P) data is likely to give unreasonable results,
since the high pressure validity (i.e. out of the measured range)
of the two starting equations is unknown.

Below we use this method for six nonassociated liquids for
which the high pressure behavior of the dielectric relaxation
time has been previously investigated. For these liquids a
constant gS was found to give a good superposition of dynamic
data, and the plots of ln(rX) versus ln(TX) are nearly linear.

Results

The dielectric relaxation and EoS data along with the scaling
exponent gS were previously published for six non-associated
liquids: o-terphenyl (OTP), gS = 5.3,33,34 1,10-di(4-methoxy-
5-methylphenyl)cyclohexane (BMMPC), gS = 8.5,35,36 phenyl-
phthalein-dimethylether (PDE), gS = 4.5,37,38 and three poly-
chlorinated byphenyls (PCB42, PCB54 and PCB62), found to

have very different values of gS (PCB42 gS = 5.5, PCB54 gS = 6.7
and PCB62 gS = 8.5).39 In particular, between these materials
BMMPC and PCB62 have some of the largest values of gS

reported in the literature for dielectric relaxation data.
Dielectric relaxation spectroscopy data were used in this study
because they have the advantage of a larger frequency range
compared with other experimental techniques used to study
the dynamics of supercooled liquids.40 Although in the litera-
ture there are more data, these samples mostly cover the entire
range of gS values found for nonassociated liquids.

For each material, we extracted from the data the pressure
dependence of the temperature TX where X was the dielectric
relaxation time t. Since the change of TX with pressure
increases with increasing t, for each data set the value of t
chosen was the longest (i.e. closest to the glass transition) for
which the largest number of data points was available; for most
liquids considered in this study was typically t = 10 s. The
pressure dependence of TX for the six liquids is reported in
Fig. 1 (symbols), together with the best fit (solid lines) to the AA
equation (eqn (8)). The best-fit parameters are reported in the
Table 1.

In Fig. 2 are reported the experimental data (open symbols)
of temperature TX versus the density rX at constant relaxation
time on a log–log plot. The solid lines in Fig. 2 are not a best fit,

Fig. 1 Temperature TX versus pressure PX at constant relaxation time for
six nonassociated liquids. The points are experimental data and the line are
the best fit to the AA equation (eqn (8)). The best-fit parameters are
reported in Table 1.

Table 1 Best-fit parameters of the data in Fig. 1 to the AA equation
(eqn (8)) displayed as solid lines in Fig. 1

T0 [K] P0 [MPa] a

PCB54 251.5 � 0.1 350.9 � 9 2.38 � 0.04
OTP 260.7 � 0.5 366 � 100 2.4 � 1
PCB62 273.6 � 0.5 499 � 87 1.77 � 0.25
PDE 307.8 � 0.6 399 � 95 2.6 � 0.5
PCB42 224.55 � 0.04 362 � 6 2.60 � 0.03
BMMPC 267 � 0.5 274 � 76 3.3 � 0.7
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they are obtained using eqn (10), with the parameters deter-
mined from the best fit of the AA equation (eqn (8)) to TX(P) and
the Tait EoS (eqn (9)). It is important to notice that both axes in
Fig. 2 are presented on a logarithmic scale, consequently in this
plot the scaling behavior described by eqn (1) with gS = constant
would correspond to a linear behavior with a slope equal to gI.
Evidently, the behaviors reported in Fig. 2 do not show a strong
deviation from linearity and a precise determination of the
pressure dependence of gI is rather difficult, especially without
an a priori model describing the nonlinear behavior of ln(TX)
versus ln(rX). Instead of determining the pressure dependence
of the exponent gI from the deviation from linearity of ln(TX)
versus ln(rX) data, we use the newly derived equation for gI(P)
(eqn (13)) which does not requires any additional data fitting
apart from the best-fit parameters obtained from the fit of
r(T,P) to the Tait EoS and the TX(P) to the AA equation.

The pressure behavior of the exponent gI(P) (obtained using
eqn (13)) is reported in Fig. 3. The results in Fig. 3 clearly shows
that for all six liquids the exponent gI decreases with pressure.
The decrease of gI with pressure is more dramatic for liquids
having a larger value of gS, while for materials with gS closer to
4, the change of gI is much smaller. It is important to notice
that in all cases, even at the highest pressure, the parameter gI

remains always larger than 4. This behavior is consistent with
that recently observed for DC704, for which gI was found to
decrease from B7 to a value close to 4, although over a much
larger pressure range (up to P = 0.9 GPa).14 It is important to
notice that the parameter gI is dependent also on temperature
(inset to Fig. 3), with a similar behavior to that observed versus
pressure, gI decreases with increasing temperature tending at
high temperature to what appears to be a limit value close to 4.
We compare the results in Fig. 3 with previous values reported
for gS from either (method 1) calculations of gS from a master
curve superpositioning dynamic data as a function of Tr�gS or

(method 2) slope values of a linear fit to the data in Fig. 2. Both
methods give determinations of gS close to the average value of
gI over the entire pressure range.

Discussion

A limit of the method described above is that the TX(P) behavior
may be better described with different equations than the AA
equation. In principle, it could be possible to obtain a different
gI(P) behavior. For this reason we analyzed the TX(P) behavior
for the case of PCB62 (since it has the largest number of points)
using two nonlinear equations alternative to the AA equation: a
quadratic equation TX(P) = d0 + d1P + d2P2 and logarithmic
equation TX(P) = a0[1 + a1 ln(1 + P/a2)] (where dn and an are
constants).

The best fit to the TX(P) data using these two equations
(best-fit parameters are in the Fig. 4 caption) are reported in
Fig. 4 together with the best fit obtained with the AA equation.
From an analysis of the best-fit residuals (lower inset to Fig. 4)
it is evident that all equations give a good description of the
TX(P) behavior, while larger deviations are observed fitting the
data with a linear behavior of TX(P) with pressure.

The top inset to Fig. 4 shows the parameter gI determined by
calculating numerically using eqn (12) for the four different
best-fit equations to TX(P). We find that as long as the best fit
had a similar deviation from the TX(P) data (residuals are
shown in the bottom inset to Fig. 4), a similar behavior of gI

was found within a deviation of about 0.2. Interestingly, if we
analyzed the TX(P) data using a linear behavior (which has a
larger deviation from the data, especially at low pressure,
as shown in the bottom inset to Fig. 4), the resulting pressure
dependence of gI is strongly reduced (top inset to Fig. 4).

Fig. 2 log–log plot of temperature, TX, versus density, rX, at a constant
relaxation time for 6 non-associated liquids. The symbols are experimental
data and the solid lines are the data calculated using eqn (10) using the best
fit to the AA equation (eqn (8)) and the Tait EOS (eqn (9)).

Fig. 3 Main: pressure dependence of the parameter gI for six non-
associated liquids calculated using eqn (13) with the parameters from the
EoS and the best-fit of the AA equation to the TX(P) data (Table 1). Inset:
Temperature dependence of the parameter gI for six nonassociated liquids
calculated as described above. The temperature TX was normalized by its
value at atmospheric pressure.
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The difference between the pressure dependence of gI obtained
fitting the TX(P) data with a linear versus non-linear behavior, is
indicative that most of the observed change in gI is related to
the non-linear behavior of TX(P). The observation that other
equations alternative the AA equation can give a satisfactory
description of TX(P) evidently imposes a limit to the use of
eqn (13) for determining the behavior of gI beyond the range of
the experimental data. Following the same procedure described
above, but substituting the AA equation with a quadratic or
logarithmic equation, different equations for the pressure
dependence of gI can be obtained and these will certainly have
a different behavior at pressures beyond the experimental range
of the measurements. It is worth mentioning that the same
analysis for PCB62 repeated at different t (up to t = 10�6 s) gives
the same behavior reported above (for t = 1 s) with same deviations
at high frequency (o0.3) within the error determined by propaga-
tion of the error of the best fit to the AA equation.

From the results shown above we see that, notwithstanding a
constant gS was found to give a good superposition of dynamic
data33–39 and that the plot of ln(rX) versus ln(TX) is nearly linear
(Fig. 2), a significant dependence of gI on pressure can still be
found using eqn (13). These two results seems to be in contra-
diction with each other, especially if we intuitively think that gI and
gS should have a similar value. To check for this apparent
discrepancy, we determined the pressure dependence of gS from
the same data using a different approach. We rewrote eqn (2) as

ln(TX(P)) � gS(P)ln(rX(P)) = ln(TX(0)) � gS(0)ln(rX(0)). (15)

From this follows the condition for the pressure dependence of
gS(P) necessary to have a ‘‘perfect’’ scaling,

gS Pð Þ ¼ ln TX Pð Þð Þ � ln TX 0ð Þð Þ þ gS 0ð Þ ln rX 0ð Þð Þ
ln rX Pð Þð Þ : (16)

Since the pressure dependence of TX(P) and rX(P) are known
the only free parameter is gS(0). Evidently, we don’t have an
a priori value of gS(0), and different values will correspond to
very different pressure dependences of gS(P). However, we
found that if we use an initial value of gS(0) close to the gS

determined before from the superposition of X(T,r), then the
behavior of gS(P) is extremely different from that of gI(P).

In Fig. 5 the pressure behavior of gS(P) is reported on the
same scale of the behavior of gI(P) in Fig. 3. Since the behavior
is very close to a constant, the interval of variation of gS(P) is
reported in the caption of Fig. 5, and we find that gS(P) changes
within 0.1 of the average value. This behavior is very different
from that observed for gI(P) in Fig. 3 where variations of more
than a factor of 2 are shown.

These results clearly show that a good scaling plot (eqn (1))
can be found also in cases in which gI(P) depends strongly on
pressure.

This is because the superpositioning method and the log–
log plot method are better suited at determining an average
value of gI rather than evaluating its state-point dependence. In
particular, we find that such dependence is larger for materials
having larger gS and at high pressure the value of gI remains
larger than 4 like in the case of DC704.14 This is in contrast with
the behavior of associated liquids for which was found to
increase with pressure approaching the value gI B 4 at high
pressure.21 Interestingly, in both cases of associated and non-
associated liquids, even if the pressure behavior is opposite, the
condition gI = 4 appear to be same high pressure limit. As

Fig. 4 Pressure dependence of TX for PCB62 (same as in Fig. 1) with the
best fit to the data using the AA equation and three other equations.
A linear equation TX(P) = l0 + l1P (best-fit parameters l0 = 274.6 � 0.6,
l1 = 0.282 � 0.004), a quadratic equation TX(P) = d0 + d1P + d2P2 (best-fit
parameters d0 = 273.7 � 0.5, d1 = 0.306 � 0.009, d2 = (�9.5 � 3.4) � 10�5)
and a logarithmic equation TX(P) = a0[1 + a1 ln(1 + P/a2)] (best-fit para-
meters a0 = 273.6 � 0.5, a1 = 1316 � 485, a2 = 1.5 � 0.5). Lower inset: Best
fit residuals, versus pressure, for the best fit to the four equations used for
the description of TX(P). Upper inset: gI parameter versus pressure,
obtained calculating numerically eqn (12) for the four different equations
used to describe the behavior of TX(P).

Fig. 5 Parameter gS(P) as a function of pressure determined using eqn (16)
with the value gS(0) equal to the value found from superposition the X(T,r)
data.
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discussed in ref. 21, the opposite behavior for associated
liquids is attributed to the progressive reduction of the hydro-
gen bonded network with increasing pressure, which initially
causes gI to be smaller than 4.

Conclusions

In this study we report a new analytical method to describe the
pressure dependence of the exponent gI. To use this method it
is only necessary to determine the pressure dependence of the
temperature at constant X, TX(P) and the EoS.

Using this new method it is possible to determine the
pressure dependence of the parameter gI even for liquids for
which a constant gS exponent gives a very good superposition of
various dynamic properties and an almost linear behavior of
ln(TX) versus ln(rX). In the past gS and gI have been considered
to be the same, but here we show that this is not true and that
their behavior with pressure (and temperature) is very different.
We find that the previously determined values of gS are close
to an average value of the observed gI(P), and its change
with pressure is significantly smaller than that of gI(P).
In several papers these two parameters have been considered
equivalent,6,7,11,14,16 which is clearly not correct in general.
In particular, it is not correct to refer to the parameter gI as a
scaling exponent, since no superposition of the X(T,r) data can
be obtained using this parameter, unless for special cases in
which gI B const (i.e. changes of less than 10% over the
investigated range).

For all nonassociated liquids, the exponent gI(P) is found to
decrease with pressure. The change of gI(P) is found to be
smaller for liquids with gI(0) (and gS) closer to 4, consistent with
a high pressure limit of gI(P) B 4. This behavior is similar to
that found in a recent report on the pressure dependence of the
gI(P) exponent for the nonassociated liquid DC704. While it is
in contrast with that of associated liquids for which we found
gI(P) increases with pressure from gI(0) o 4 to gI(P) B 4 at high
pressure.

From a theoretical point of view, it has been demonstrated
that the TDS behavior (eqn (1)) is predicted in the case for
which the intermolecular potential, U(r), is dominated by the
repulsive part of the potential and it can be described by an
inverse power law behavior U(r) p r�n. In this case the TDS

follows with gS ¼
n

3
.41,42 Molecular dynamic simulations have

shown that, in the case of Lennard Jones (LJ) type potentials in
which the attractive part cannot be neglected, the TDS behavior

is still verified but with gS 4
n

3
(where n is the exponent of the

repulsive part at an average intermolecular distance), and
3gS represents an average slope of the intermolecular
potential.43–45 Accordingly the parameter gI can be considered
as the local slope of the potential. Therefore, the variation of
the exponent gI with pressure for nonassociated liquids is
consistent with a decrease of the effect of the attractive part
of the potential with increasing pressure, so that at high
pressure the intermolecular potential is dominated by its

repulsive part. In particular, since the data are consistent with
gI B 4 as the high pressure limit of the exponent gI, then the
high pressure limit of the potential corresponds to U(r) p r�n

with n B 12.21 Therefore, current results are consistent with an
exponent of the repulsive part of the potential, n B 12, for all
seven nonassociated liquids in which a change of gI has been
found using eqn (7).

This form for the repulsive term of the potential is evidently
consistent with a potential such as the Lennard-Jones 6-12
potential. However, it is not a proof of the validity of the LJ
potential, since the high-pressure measurements are relevant for
very small intermolecular distances. Our results only indicate
that at very small intermolecular distances, the intermolecular
potential can be described locally with a mathematical form that
is close to an inverse power law with an exponent close to 12 in
the limit of high pressure (high density and high temperature).
This is very important since there is currently no other experi-
mental determination of the repulsive part of the potential, and
these results may offer an experimental approach to determine a
functional form of the potential that can be used in molecular
dynamics simulation.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Office of Naval Research
(N0001419WX00437). TCR acknowledges an American Society
for Engineering Education postdoctoral fellowship.

References

1 R. Casalini and C. M. Roland, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2004, 69, 062501.

2 C. Dreyfus, A. Le Grand, J. Gapinski, W. Steffen and
A. Patkowski, Eur. J. Phys., 2004, 42, 309–319.

3 C. Alba-Simionesco, A. Cailliaux, A. Alegria and G. Tarjus,
Europhys. Lett., 2004, 68, 58–64.

4 E. R. López, A. S. Pensado, M. J. P. Comuñas, A. A. H. Pádua,
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